

Spring is coming and the sun brings light into flats

and houses. Dust and dirt being collected unrecog-

nized during the

dark season now

gets visible.

Thus in many

households the

spring-cleaning

is started. Why

don’t you ex-

tend your spring

-cleaning also to

your COBOL-

and PL/I-

applications?

Such

applications

were developed

over many years or even decades. Within this time

they were alive – they got maintained, extended,

adapted to new requirements and therefore they

grew. At many places dispensable ballast has been

collected, program structures got changed, documen-

tation is not available any more or not up to date.

Maintaining and comprehending the application gets

more and more complex.

AMELIO Logic

Discovery extracts

the implemented

application logic

from COBOL and

PL/I applications

and thereby helps

to comprehend

them. The disco-

very of the applica-

tion logic is per-

formed in three

steps – inventory, code optimization and logic an-

alysis. The inventory determines which elements –

i.e. programs, interfaces and data structures as well

as dependencies between them – build the applica-

tion. Elements relevant to be maintained or needed to

be comprehend get determined during the optimisa-

tion phase, e.g. dead code is detected, documented if

applicable and removed. The information provided

by the preceding steps is used by the logic analysis to

gain models which are independent from program-

ming languages as well as from programming para-

digms. Thereby the application logic is extracted and

comprehensible represented.

We combined the inventory and the dead code analy-

sis and reduction in the CleanUp package of

AMELIO Logic Discovery. This package is intended

to re-document existing applications and particular-

ly to recognize, document and remove dispensable

ballast and thus to efficiently, dependably and auto-

matically perform the spring-cleaning.

The first step of the spring-cleaning as well as of the

comprehension of an application is to determine

what has been developed in the past time. Therefore

the inventory discovers, for example, which pro-

grams build the application and which interfaces,

data structures and dependencies do exist in these

programs. Instead of a pure appraisal AMELIO Logic

Discovery already provides analyses:

 Conventional metrics, such as Halstead or

McCabe

 Listing of existing data definitions

 Listing of all data base and file accesses

 Listing of all interface definitions and possible

conflicts

 Representation of program and sub-program calls

 Representation of procedures, their call hierarchy,

conditions and interfaces.

The results of the various analyses are displayed in

AMELIO Logic Discovery’s analysis workbench. A

special highlight of this inventory is shown below, as

an example for an analysis and the result representa-

tion: It represents procedures together with their call

hierarchy, the interfaces, used parameters and par-

ticularly the conditions defining when the corre-

sponding procedure will be performed. Due to the

fact that there are no explicit procedures given in

COBOL each program of the application is analysed.

On the basis of the discovered call structures several

parts of a program get combined and thereby build

the procedures. In PL/I there are explicit procedures.

These can be used as a basis for further analysis how-

ever many procedures are hidden by entry-variables

and generics and have to be identified first. The dis-

covered procedures and their call hierarchy are gra-

phically represented. The result of the analysis is

exemplarily shown in the following picture:

 Procedure graph: Displays the discovered proce-

dures and their call hierarchy as well as calls of

sub-programs and “wild” branches produced by

GOTO.

 Conditions: During the inventory a condition

analysis is already performed. This analysis dis-

covers which conditions have to be fulfilled so

that a procedure can actually be performed. The

result is displayed as condition table.

 Data structures (COBOL): For each procedure it

is displayed which data structures are read re-

spectively modified by the procedure.

 Data structures (PL/I): For each procedure it is

displayed which global data structures are read

respectively modified by the procedure.

 Interfaces: For PL/I application the interface and,

if existing, the return value for each procedure is

additionally represented

 Control flow: For each procedure its control flow

is displayed.

2

 Code parts: Those code parts which build a cer-

tain procedure are shown. Within these parts

read respectively modified data structures are

marked by colours.

The longer an application exists the more often it got

extended and adapted. Therefore it can be assumed

that by age the amount of dead code within the app-

lication is increasing. I.e. code that exists but will

never be performed. This code has to be maintained,

complicates the comprehension of the application

logic and requires storage. Besides the inventory the

detection and elimination of dead code is therefore a

central element of the spring-cleaning.

The dead code analysis is performed per program. It

consists of the following elements which are based

on each other:

 Direct dead code: Procedural code which is never

performed as it is never called

 Conditional dead code: Procedural code which is

only performed under certain conditions (e.g.

within an if-condition) but these conditions can

never be fulfilled

 Oblique dead code: Procedural code which is only

performed by dead code

 Direct dead data definitions: Data definitions

which are never used

 Oblique dead data definitions: data definitions

which are used only in dead code

 Redundant data definitions: Literally these are no

dead data definitions, instead they got produced

by copy and paste. Anyway, they can be detected

during the dead code analysis.

The result of the dead code analysis is shown in the

following picture:

 Reduced procedure graph: This graph contains all

dead procedures (coloured in orange, the selected

procedure is coloured red) and all procedures

which contain dead code (shaded orange). If a

procedure is never called because the according

condition cannot be fulfilled the call is marked

orange. In addition all procedures are displayed

which are above a dead procedure within the call

hierarchy or which build alternative paths to a

procedure called by a dead procedure.

 Blocking condition: Condition blocking the

execution of the procedure.

 Data definitions: Represents the data definitions.

Dead data definitions are marked red.

3

 Statistics: Dead code statistics for the entire pro-

gram. It notes how many dead routines, lines of

dead procedural code and data definitions were

detected. Additionally all dead elements are listed.

But the dead code analysis of AMELIO Logic Dis-

covery takes one step further. Developing COBOL as

well as PL/I applications copy books respectively in-

cludes or - in case of ADS generated applications -

macros are used. In these cases it is not sufficient to

analyse single programs as the dead code can result

from the use of copy books, includes or macros. Addi-

tionally they themselves can contain code which is

never compiled respectively generated. This code is

also detected by AMELIO Logic Discovery. To allow

the analysis of copy books and includes AMELIO

Logic Discovery emulates the appropriate compile

function. The result of this coverage analysis contains

the following information:

 How many primary sources use a certain copy

book, include or macro

 How often a certain copy book, include or macro

is called during compilation respectively genera-

tion

 How often certain parts of a copy book or include

are used during the compilation respectively how

often certain parts of a macro are used during ge-

neration

 How often the created code is actually executable

Now that the dead code, in all its facets, is detected

and documented it can be removed. If the clean-up is

performed manually there is the risk that not all lines

or too many lines are removed and thereby the pro-

gram logic is modified. Thus it is safer and faster to

use the transformation function of AMELIO. It re-

moves the entire dead code, procedural as well as

data definitions.

COBOL and PL/I application grew over several years

or even decades. In addition to the actually necessary

functionality also dispensable ballast, complicating

the maintenance and the comprehension of the

application, has been accumulated during this time.

With its inventory functions AMELIO Logic Dis-

covery helps to gain an overview over the parts

which define the application and which relations

exist. The dead code analysis detects dead code,

procedural as well as data definitions, and can also

remove it automatically. This results in meaningful

documentations as well as in cleaned up applications

which are easier to maintain and to comprehend.

Thus AMELIO Logic Discovery CleanUp supports

maintenance and quality assurance.

Start spring-cleaning your COBOL and PL/I appli-

cations now. The CleanUp package of AMELIO

Logic Discovery lights also the most hidden corners

of application. It shows the dust and can remove it -

fast, reliably and efficiently.

4

Copyright © 2015 Delta Software Technology GmbH. All rights reserved.

Delta, SCORE, ObjectBridge, SCOUT², AMELIO, HyperSenses and the logo of Delta Software Technology are registered trademarks and SCORE Adaptive Bridges, SCORE Data Architecture

Integration, Model Driven Legacy Integration, Integration in Motion, SCORE Transformation Factory, AMELIO Modernization Platform, ADS, ANGIE and Active Intent are trademarks of Delta

Software Technology GmbH in Germany and/or other countries. All other registered trademarks, trademarks, trade names or service marks are the property of their respective owners.

Order number: MA 24’017.02 – March 2015

Delta Software Technology is a specialist for generative development tools that automate the

modernisation, integration, development and maintenance of individual IT applications.

Our solutions help you to quickly and safely adapt your applications to new business

requirements, architectures, technologies and technical infrastructures.

The tailor-made factory for the modernisation of large IT applications:

100% automatically and that's why it is safe, reliable and error-free.

Comprehending COBOL- and PL/I-Applications:

Cut costs and risks for maintenance, modernization and re-implementation.

Integrated system for model driven development of DSLs and software generators.

Intelligent service enablement for the reuse of proven applications with modern technologies:

flexible, profitable and non-invasive.

Data as real business services: fast, easy and independent of data architectures and

management systems.

Optimized and integrated development processes across all software components, tools and

platforms: Stop the “fight against the infrastructure”.

Platform independent development for future-proof back-end applications.

Delta has a more than 35-year track record of successfully delivering advanced software

technology to Europe’s leading organisations, including AMB Generali, ArcelorMittal,

Deutsche Telekom, Hüttenwerke Krupp Mannesmann, Gothaer Versicherungen, La Poste,

RDW, Suva and UBS.

AMELIO Logic Discovery helps to understand the existing COBOL- and PL/I-

applications and thus reduces the costs for re-implementation of the existing

functions and for the modernization of the applications.

Further information can be found under:

The "Initiative Mittelstand" (Initiative for Small and Medium-sized Businesses)

awarded AMELIO Logic Discovery with the predicate BEST OF 2015.

mailto:info@d-s-t-g.com
http://www.delta-software.com/amld

