

Well, Frank Zappa is not particularly known for IT

quotes but this line from one of his song texts is very

true.

In an attempt to comprehend the functionality of a

certain software, we begin one step before the infor-

mation: with the data from the software. But first, of

course, information must be generated from this data

before you can derive knowledge from it. This con-

nection between data, information and knowledge is

often depicted as knowledge pyramid.

To make it even more difficult the required data is at

first hidden in source code or the programs. To en-

able further processing the data must be extracted by

a parser. The first information is generated as soon as

this data is interlinked and stored in a repository or

as ABSTRACT SYNTAX TREE (AST).

No matter how extensive and detailed it might be,

this information is not enough to make qualified

statements about the logic of a software. It is also not

enough to somehow sort or arrange the information

and to consolidate it. Real knowledge about the

application doesn’t show itself in this way.

We want to show this by using the following prac-

tice example. We also want to show how the transi-

tion from the information to the knowledge can be

realized.

A Very Simple Task
As part of a large migration project a customer asks

us whether we are able to find out which programs

have write access and to which part of the database.

The aim is to find program clusters for the migration

that have a certain part of the database in common.

For the read accesses the customer has already found

a solution by using a real time replication so that only

the write accesses are relevant.

This seems to be a relatively simple task at first

glance because we have already the data about all

programs and databases in ASTs and repositories in

preparation of the automated migration. The data

"Information is not Knowledge"

D E L T A

software
technology

AMELIO
LOGIC DISCOVERY

- Frank Zappa

definition and DB operations are already completely

analysed and any information about it is available in

detail. First evaluations are therefore provided and

performed quickly.

In principle, the result complies with the following

small exemplary diagram 1 (red arrows for write op-

erations and grey arrows for read operations which

must not be considered):

The actual result is a lot more extensive and more

complex, of course, because we have several thou-

sand programs and hundreds of DB tables in this

project.

The information collected in this way is transferred

to a table per program and is arranged in the way

that possible clusters to be derived from the write

operations can be recognized.

But already during the implementation of this solu-

tion is gets clear that this selected approach is not

sufficient.

A Not So Simple Task
Many of the programs involved are sub-programs

which also contain DB operations. As the appropriate

main programs cannot be executed without the asso-

ciated sub-programs and can therefore not be migra-

ted, the DB operations called via sub-program must

be considered in the analysis.

Even in the simple example you can see that the re-

sulting diagram 2 gets more complex.

Especially the cluster table changes completely as the

DB operations which are indirectly executed via sub-

program get visible (marked in blue).

The result of this analysis is very significant and

shows that the relationship between programs and

databases are more complex than initially expected.

In particular, there are more dependencies than ex-

pected.

A Much More Difficult Task
During the discussion of the results doubts arise

whether it is right to assume that the call of a sub-

program automatically leads to the fact that all

functions presented therein are always executed.

Isn’t it likely that, for example, the execution of DB

operations depend on how the respective sub-

program is called and that not every main program

uses all possible functions of the sub-programs?

2

Diagram 1

Diagram 2

Typical cases are the so-called CRUD modules

(CRUD means Create, Read, Update and Delete)

with all kinds of DB operations per DB table. These

modules are normally called by many programs but

often only read operations are requested. That means

assuming that the call of such a CRUD module also

includes the execution of update or delete statements

leads to wrong conclusions.

The following applies to the small example:

The information

1. The program A calls the program E via C and D

2. The program E changes the databases Y and Z

does not automatically mean that the execution of

the program A results in or might result in changes of

the databases Y and Z!

To illustrate this, conditions for the sub-program call

(cond 1) and the write operations (cond 2 and cond 3)

are inserted into the exemplary diagram 3. Obviously

the write statement for Y is only executed if cond 1

and cond 2 are fulfilled. The same applies to Z, cond 1

and cond 3.

When you suppose, for example, that calls from the

program A don’t fulfil the condition cond 1 and that

calls from the program F don’t fulfil the condition

cond 2, cluster table would look like diagram 4.

To decide whether the programs A or F change the

DB tables Y or Z, the complete path from the pro-

grams A and F to the appropriate options must be

analysed and “understood”.

But this “understanding” is associated with a large

range of complications:

• The paths that must be analysed might run across
any number of programs, with branches, loops

and alternative paths.

• In practice, the conditions which stand in the

diagram beside the connections to the sub-

program and the databases consist of several,

partially alternative or even inconsistent con-

ditions.

• The conditions might depend on data elements

which are defined in the program interface. This

means that also the data flow in the higher-level

programs must be analysed.

Information is not Knowledge
Arriving at this point it is clear that the large amount

of comprehensive and detailed information stored

about the application package is a good starting but

it is not sufficient to give a qualified answer to the

asked questions. The right answers can only be given

if the application logic is fully understood and acces-

sible.

If a limited maintenance task only covers some indi-

vidual programs, you can achieve this manually.

There are appropriate tools that allow you to follow

the application functions stepwise in a controlled

3

Diagram 3

Diagram 4

manner. But this is a completely unthinkable ap-

proach for the analysis of hundreds and thousands of

programs. We need a solution that automatically ga-

thers knowledge from a large amount of information

and literally transforms this information into know-

ledge.

To achieve this, a next, big abstraction step is neces-

sary. For that purpose, new models are derived from

the information about the implemented functionality

in the software, as we can find them in repositories

and ASTs. These models show the application func-

tions and make the logic available.

The example above is not an exotic special case but is

very typical of the type of questions that arise in con-

junction with the modernisation of software systems.

• Which program code is unused or redundant?

• How can programs be restructured for a better

maintainability?

• Which application functions are contained in a
program?

What does the program do and under what con-

ditions?

• Which program modules and functions can be
encapsulated as service and be re-used?

• Which program modules and routines can be re-
used as classes or methods in an object-oriented

re-implementation?

• ...

In all these cases one or more logical models are re-

quired which allow a qualified answer to the ques-

tions. These models are the control flow model, the

condition model and the data flow model.

The Logical Models

The Control Flow and Procedure Model
A control flow model allows to find out whether

there are one or more paths from the program input

to a certain point in this program. It displays the

branches, loops and alternatives on these paths and

the conditions they depend on.

In legacy languages like COBOL there are no explicit

definitions of procedures or functions. In the extend-

ed control flow the implicitly embedded procedures

are made visible.

In the given task all paths from the program input to the DB

operations or to the relevant sub-program calls are determined

for each program.

The Condition Model
This model has two main tasks:

1. To bring all conditions into a language-inde-

pendent and normalized form so that they can be

compared with each other without further ado.

Even simple conditions can often be formulated

in different ways. That applies especially to large

expressions.

2. There must be mechanisms to combine several

partial conditions to one new normalized condi-

tion. In the process redundancies and inconsis-

tencies must be detected.

In the described task all conditions must be combined on the

path from the main program to the DB operation in the way

that a decision can be made which condition must be fulfilled to

achieve this point or to find out that these conditions can’t be

fulfilled at all.

The Data Flow and Data Dependency Model
This extended data flow model describes three

essential, complementary aspects:

1. The data flow at all levels, top-down from the
program across the different procedures to the

individual statements. Each incoming and out-

going data is visible.

2. The dependencies between the individual pro-
gram steps that result from the data flow are

held. Uncovering the implicit dependencies

makes it possible to re-structure programs re-

liably.

3. Values are often assigned to individual data
elements at several different points in the

4

program. But the distinction of the resulting dif-

ferent roles of the data elements and the presen-

tation of the data flow per role is an indispensa-

ble prerequisite for understanding the logic of an

application.

To analyse the paths from the main programs to the DB opera-

tions the understanding of the data flows is indispensable. In

program interfaces data elements can typically be found which

have different roles that depend on the call. These roles must be

kept separated to be able to evaluate the further data and

control flow.

The Result – From the HOW to the
WHAT
The mentioned migration project has been concluded

successfully at the end of 2011 and has been made

productive at 1.1.2012 without any problems. The

cluster formation analysis just one step in a transfor-

mation project that was characterized by totally

model-driven automation.

The knowledge and experience from this and some

other projects are the decisive basis for the develop-

ment of our current product AMELIO Logic
Discovery. The usual meta data repositories answer

especially the question: HOW is the application

implemented? In AMELIO Logic Discovery this

information is automatically transformed into logical

models and provides answers to the question: Was

does the application do?

This transition from the HOW to the WHAT is the

decisive step to gain knowledge from information.

INFORMATION IS NOT KNOWLEDGE – but there are

ways to generate information from data and to derive

knowledge from the information.

AMELIO® Logic Discovery
helps to understand the existing COBOL- and PL/I-applications and thus reduces the costs for
re-implementation of the existing functions and for the modernization of the applications.

Further information can be found under:

www.d-s-t-g.com/amld

Copyright © 2013 Delta Software Technology GmbH. All rights reserved.
Delta, SCORE, ObjectBridge, SCOUT², AMELIO, HyperSenses and the logo of Delta Software Technology are registered trademarks and SCORE Adaptive Bridges, SCORE Data Architecture Integra-
tion, Model Driven Legacy Integration, Integration in Motion, SCORE Transformation Factory, AMELIO Modernization Platform, ADS, ANGIE and Active Intent are trademarks of Delta Software
Technology GmbH in Germany and/or other countries. All other registered trademarks, trademarks, trade names or service marks are the property of their respective owners.
Order number: MA 24‘018.01 – July 2013

