

1. Spring-Clean Your

COBOL and PL/I

applications

2. Integration of ADS in

Development

Environments of Micro

Focus and IBM

3. ADS 6 for PL/I is now

available as Final Release

4. New SCORE Release

5. The Cobbler's Children

are Best Shod

Spring is coming and the sun

brings light into flats and houses.

Dust and dirt being collected un-

recognized during the dark reason

now gets visible. Thus in many

households the spring-cleaning is

started. Why don’t you extend

your spring-cleaning also to such

that also your COBOL- and PL/I-

applications? Such applications

were built over many years or even

decades. Within this time they

were alive – they got maintained,

extended, adapted to new require-

ments and therefore they grew. At

many places dispensable ballast

has been collected, program struc-

tures got changed, documentation

is not available any more or not up

to date. Maintaining and compre-

hending the application gets more

and more complex.

AMELIO Logic Discovery extracts

the implemented application logic

from COBOL and PL/I applica-

tions and thereby helps to compre-

hend them. The discovery of the

application logic is performed in

three steps – inventory, code opti-

mization and logic analysis. The

inventory determines which ele-

ments – i.e. programs, interfaces

and data structures as well as de-

pendencies between them – build

the application. Elements relevant

to be maintained or needed to be

comprehend get determined dur-

ing the optimisation phase, e.g.

dead code is detected, documented

if applicable and removed. The

information provided by the pre-

ceding steps is used by the logic

analysis to gain models which are

independent from programming

languages as well as from pro-

gramming paradigms. Thereby the

application logic is extracted and

comprehensible represented.

We combined the inventory and

the dead code analysis and reduc-

tion in the CleanUp package of

AMELIO Logic Discovery. This

package is intended to re-

document existing applications

and particularly to recognize, doc-

ument and remove dispensable

ballast and thus to efficiently, de-

pendably and automatically per-

form the spring-cleaning.

The first step of the spring-

cleaning as well as of the compre-

hension of an application is to de-

termine what has been collected in

the past time. Therefore the inven-

tory discovers, for example, which

programs build the application

and which interfaces, data struc-

mailto:info@delta-software.com
http://www.delta-software.com

tures and dependencies. Instead of a pure appraisal

AMELIO Logic Discovery already performs analyses:

 Conventional metrics, such as Halstead or McCa-

be

 Listing of existing data definitions

 Listing of all data base and file accesses

 Listing of all interface definitions and possible

conflicts

 Representation of program and sub-program

calls

 Representation of procedures, their call hierar-

chy, conditions and interfaces.

The results of the various analyses are displayed in

AMELIO Logic Discovery’s analysis workbench. A

special highlight of the inventory is presented in the

following, as an example for an analysis and its re-

sult representation: It is representing procedures

together with their call hierarchy, the interfaces,

used parameters and particularly the conditions

defining when the corresponding procedure has to

be performed. Due to the fact that there are no ex-

plicit procedures given in COBOL each program of

the application is analysed. On the basis of the dis-

covered call structures several parts of a program

get combined and thereby build the procedures. In

PL/I there are explicit procedures. These can be

used as a basis for further analysis however many

procedures are hidden by entry-variables and gener-

ics and have to be identified at first. The discovered

procedures and their call hierarchy are represented

as graph. The result of the analysis is exemplarily

shown in the following picture:

 Procedure graph: Displays the discovered proce-

dures and their call hierarchy as well as calls of

sub-programs and “wild” branches produced by

GOTO.

 Conditions: During the inventory a condition

analysis is already performed. This analysis dis-

covers which conditions have to be fulfilled so

that a procedure can actually be performed. The

result is displayed as condition table.

 Data structures (COBOL): For each procedure it

is displayed which data structures are read re-

spectively modified by the procedure.

 Data structures (PL/I): For each procedure it is

displayed which global data structures are read

respectively modified by the procedure.

 Interfaces: For PL/I application the interface and,

if existing, the return value for each procedure is

additionally represented

 Control flow: For each procedure its control flow

is displayed.
2

 Code parts: Those code parts which build a cer-

tain procedure are shown. Within these parts

read respectively modified data structures are

marked by colours.

The longer an application is alive the more often it

got extended and adapted. Therefore it can be as-

sumed that conditioned by age the amount of dead

code within the application is increasing. I.e. code

that exists but can never be performed. This code

has to be maintained, complicates the comprehen-

sion of the application logic and requires storage.

Besides the inventory the detection and elimination

of dead code is therefore a central element of the

spring-cleaning.

The dead code analysis is performed per program. It

consists of the following elements which are based

on each other:

 Direct dead code: Procedural code which is never

performed as it is never called

 Conditional dead code: Procedural code which is

only performed under certain conditions (e.g.

within an if-condition) but these conditions can

never be fulfilled

 Oblique dead code: Procedural code which is on-

ly performed by dead code

 Direct dead data definitions: Data definitions

which are never used

 Oblique dead data definitions: data definitions

which are used only in dead code

 Redundant data definitions: Literally these are no

dead data definitions, instead they got produced

by copy and paste. Anyway, they can be detected

during the dead code analysis.

The result of the dead code analysis is shown in the

following picture:

 Reduced procedure graph: This graph contains

all dead procedures (coloured in orange, the se-

lected procedure is coloured red) and all proce-

dures which contain dead code (shaded orange).

If a procedure is never called because the accord-

ing condition cannot be fulfilled the call is

marked orange. In addition all procedures are

displayed which are above a dead procedure

within the call hierarchy or which build alterna-

tive paths to a procedure called by a dead proce-

dure.

 Blocking condition: Condition blocking the exe-

cution of the procedure.

 Data definitions: Represents the data definitions.

Dead data definitions are marked red.

3

Results of dead code analysis

 Statistics: Dead code statistics for the entire pro-

gram. It notes how many dead routines, lines of

dead procedural code and data definitions were

detected. Additionally all dead elements are

listed.

But the dead code analysis of AMELIO Logic D

covery takes one step further. Developing COBOL as

well as PL/I applications copy books respectively

includes or - in case of ADS applications - macros

are used. In these cases it is not sufficient to analyse

single programs as the dead code can result from the

use of copy books, includes or macros. Additionally

they themselves can contain code which is never

compiled respectively generated. This code is also

detected by AMELIO Logic Discovery. To allow the

analysis of copy books and includes AMELIO Logic

Discovery emulates the appropriate compile func-

tion. The result of this coverage analysis contains

the following information:

 How many primary sources use a certain copy

book, include or macro

 How often a certain copy book, include or macro

is called during compilation respectively genera-

tion

 How often certain parts of a copy book or include

are used during the compilation respectively how

often certain parts of a macro are used during

generation

 How often the created code is actually executable

Now that the dead code, in all its facets, is detected

and documented it can be removed. If the clean-up

is performed manually there is the risk that not all

lines or too many lines are removed and thereby the

program logic is modified. Thus it is safer and faster

to use the transformation function of AMELIO Log-

ic Discovery instead. It removes the entire dead

code, procedural as well as data definitions.

COBOL and PL/I application grew over several

years or even decades. In addition to the actually

necessary functionality also dispensable ballast that

complicates the maintenance and the comprehen-

sion of the application has been collected during

this time. With its inventory functions AMELIO

Logic Discovery helps to gain an overview over the

parts which build the application and which rel

tions exist. The dead code analysis detects dead

code, procedural as well as data definitions, and can

also remove it automatically. This results in mean-

ingful documentations as well as in cleaned up ap-

plications which are easier to maintain and to

4

Results of dead code analysis for ADS macros

http://www.d-s-t-g.com/index.php?option=com_content&view=article&id=972&Itemid=2218
http://www.d-s-t-g.com/index.php?option=com_content&view=article&id=972&Itemid=2218

comprehend. Thus AMELIO Logic Discovery

CleanUp supports maintenance and quality as-

surance.

Start spring-cleaning your COBOL and PL/I applica-

tions now. The CleanUp package of AMELIO Logic

Discovery lights also the most hidden corners of ap-

plication. It shows the dust and removes it - fast,

reliably and efficiently.

Many of our customers who develop with ADS use

development platforms from Micro Focus and IBM

at the same time. These platforms provide the func-

tionality for the integrated development of mainfra-

me applications, for example the development of

COBOL and PL/I for IBM z/OS on workstations

with Microsoft Windows. In close cooperation with

Micro Focus and IBM integrated solutions for ADS

and the development platforms of these providers

have now been created.

Due to the consolidation of the development en-

vironments a uniform, productive, graphical and

modern working environment for the development

of Java and (web)front-ends as well as of COBOL-,

PL/I- and Delta ADS applications is provided to the

developers.

As a result, we now offer our customers, besides

ADS on SCOUT² and ADS on Eclipse, ADS for other

development environments:

 ADS on Micro Focus EDZ (Enterprise Developer

for z)

 ADS on IBM RDz (Rational Developer for

System z)

Both development environments are based on the

open source platform Eclipse. In this way, ADS on

Eclipse is integrated into the Micro Focus Work-

flow Manager. Thus a code generation can be per-

formed as part of the workflow.

COBOL code generated by ADS can automatically

be transferred to a dataset on the z/OS host due to

the connection between ADS and RDz. A Compile/

Link job can automatically be started on the host for

this code as well.

5

AMELIO Logic Discovery - Spring-Clean Your

COBOL- and PL/I-Applications

Spring is coming and the sun brings light into flats

and houses. Dust and dirt being collected unrecog-

nized during the dark reason now gets visible.

Thus in many households the spring-cleaning is

started. How about extending your spring-

cleaning also to your COBOL- and PL/I-

applications?

ADS on RDz

https://www.delta-software.com/adsoneclipse

The following advantages result from the integrati-

on of the development tools under Eclipse:

 Uniform interface for ADS, COBOL, PL/I, C/C++,

Java, …

 Functionalities of modern development techni-

ques:

 Graphical debugging

 Syntax completion

 Real time syntax check

 Smart Editor

 Further integration with Eclipse-based tools

 Connection of SCM systems like Serena Change-

Man and ERO

 Local and remote development

 and more

The following benefits can be achieved by transfer-

ring the development to the PC:

 A higher level of productivity during the develop-

ment and maintenance of applications

 Shorter development cycles

 Relief of the mainframe by saving MIPs

 The mainframe becomes more attractive for juni-

or employees

 and more

Due to the integration of tools and avoidance of me-

dia breaks the development and test processes are

shortened significantly.

With its new functions ADS 6 for PL/I helps to de-

velop, maintain and test the PL/I applications gene-

rated with ADS and the application frameworks

created with ADS MACRO more efficiently:

 ADS 6 for PL/I improves the comprehension of

the PL/I applications developed with ADS.

 Language extensions for ADS MACRO simplify

the development and maintenance of application

frameworks.

 The Macro Optimizer ensures a better readabili-

ty and maintainability of the existing macros.

 The Post-Generation Debugger simplifies the

comprehension and the test of the generation

process.

 Reports support the maintenance and help to

(re)document the applications.

 Analyses provide reliable information for the as-

sessment of the applications.

6

 Copyright © 2015 Delta Software Technology GmbH. All rights reserved.
Delta, SCORE, ObjectBridge, SCOUT², AMELIO, HyperSenses and the logo of Delta Software Technology are registered trademarks and SCORE Adaptive Bridges, SCORE Data
Architecture Integration, Model Driven Legacy Integration, Integration in Motion, SCORE Transformation Factory, AMELIO Modernization Platform, AMELIO Logic Discovery, ADS,
ANGIE and Active Intent are trademarks of Delta Software Technology GmbH in Germany and/or other countries. All other registered trademarks, trademarks, trade names or
service marks are the property of their respective owners.
Order number: NL 21'013.01 – March 2013

With the final release ADS 6 for PL/I is now availab-

le for all target platforms (operating systems, TP

monitors und databases). Please find here an over-

view of all target platforms.

On 18th of March 2013 the new version 4.8 of

SCORE Adaptive Bridges and SCORE

Data Architecture Integration was re-

leased. Customers with existing mainte-

nance contracts can request the update

free of charge.

The version 4.8 contains the following new func-

tions:

 Easy to create transaction interfaces

 Definition of tagged values in the generator set-

tings

 Improved generation performance

 Easy to create transaction interfaces

 Definition of tagged values in the generator set-

tings

 Improved generation performance

 Definition of arbitrary expressions in GROUP BY

clauses

 Support for tables without primary keys and

support of SQL pseudo columns

 Comfortable (de)activation of indicator fields

 Import of comments from the data definition file

into the composition model

Please find further information about the new func-

tions in the Release Notes in the support area.

[Daniela Schilling] Generators and

domain specific languages (DSLs) ac-

companied by models are the central

elements of model-driven development

but paradoxically they themselves get

developed by using the conventional methods

instead of model-driven ones. As a result, the deve-

lopment of generators and DSLs is considered as a

time-consuming and error-prone hermetism. In this

article we present a solution which solves this para-

dox and significantly reduces development effort

and complexity.

The article has been published in OBJEKTspektrum

06/2012.

The english translation can be found here.

HyperSenses - Integrated system for model driven

development of DSLs and software generators.

7

Mehr Newsletter und unsere
Newsletter-Verwaltung finden Sie unter:

www.delta-software.com/newsletter

http://www.d-s-t-g.com/en/products-head/prod-score-adaptive-bridges-en.html
http://www.d-s-t-g.com/en/products-head/data-architecture-integration-en.html
http://www.d-s-t-g.com/en/products-head/data-architecture-integration-en.html
http://www.d-s-t-g.com/en/about-us/people/daniela-schilling.html?alias=ds&catalias=116
http://www.sigs-datacom.de/fachzeitschriften/objektspektrum/aktuelle-ausgabe.html?tx_mwjournals_pi1%5Bpointer%5D=0&tx_mwjournals_pi1%5Bmode%5D=1&tx_mwjournals_pi1%5BshowUid%5D=7279
http://www.sigs-datacom.de/fachzeitschriften/objektspektrum/aktuelle-ausgabe.html?tx_mwjournals_pi1%5Bpointer%5D=0&tx_mwjournals_pi1%5Bmode%5D=1&tx_mwjournals_pi1%5BshowUid%5D=7279
http://www.d-s-t-g.com/media/pdf/english/PT22035-01_The_Cobblers_Children_are_Best_Shod.pdf
http://www.d-s-t-g.com/de/hypersenses.html
http://www.delta-software.com/newsletter

